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In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is
a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between
three disease states. In practice, verification of the true disease status may be performed only for a
subset of subjects under study since the verification procedure is invasive, risky, or expensive. The
selection for disease examination might depend on the results of the diagnostic test and other clinical
characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred
to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal
tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS
for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory,
we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived.
Extensive simulation studies are performed to evaluate the performance of the new estimators in terms
of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to
accurately identify stages of Alzheimer’s disease.

Keywords: Diagnostic test; Inverse probability weighting; Missing at random; Verification
bias; VUS.
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1 Introduction

Diagnostic tests are performed to provide information about the diagnosis or detection of diseases,
track disease progression, and understand disease mechanisms (McNeil and Adelstein, 1976; Sox et al.,
1988). More than two disease classes are often necessary in many important biomedical diagnostic
tasks. Take the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study as an example, ADNI
investigators used neuropsychological tests to classify disease stages into probable Alzheimer’s disease
(AD), amnestic mild cognitive impairment (MCI), and normal cognition aging (Misra et al., 2009).
One of the goals of ADNI is to develop a new biomarker test that would be less costly substitute
for neuropathological findings. The availability of suitable biomarkers tracking the stages of AD
progression could markedly accelerate drug development by providing an earlier indication of drug
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efficacy. Thus it is critical to develop proper statistical methods to evaluate the diagnostic accuracy of
these new biomarkers.

The accuracy of a new diagnostic test can be assessed by comparing it with the gold standard
reference test (GST). In practice, often not all patients undergo the definitive disease verification
because the GST may be invasive, risky, or expensive. As a result, only a subset of the subjects who
received the new test will further have true disease status verified. In the ADNI study, definite diagnosis
requires autopsy confirmation. Therefore, the true disease status will be missing because living subjects
cannot have disease verified, and furthermore deceased subjects do not always have autopsy performed.
On the other hand, the alternative neuropsychological approach is too expensive for regular use. When
the decision regarding disease verification depends on the new test results or possibly other clinical
characteristics, estimators of the accuracy may be biased when they are only based on data from
patients with verified disease status. This bias is usually referred to as verification bias or work up bias
(Ransohoff and Feinstein, 1978; Begg and Greenes, 1983).

Receiver operating characteristic (ROC) curves and the summary measure area under the ROC curve
(AUC) are the standard approaches for assessing the accuracy of a new diagnostic tests to distinguish
between two disease states (e.g., diseased vs. nondiseased individuals). ROC analysis has been extended
to accommodate the situation in which the diagnostic task is to classify a case into one of three possible
classes (Scurfield, 1996; Mossman, 1999). Specifically, ROC surfaces and the corresponding summary
measure volume under the surface (VUS) have been proposed to evaluate the overall performance of
the diagnostic test, which represents the capability of the test in correct classification of subjects into
three different ordinal disease groups.

Several methods have been proposed for correcting verification bias when the diagnostic task is
dichotomous and the new test is continuous (Alonzo et al., 2003; Alonzo and Pepe, 2005; Rotnitzky
et al., 2006; He et al., 2009). One approach that has been proposed is to use inverse probability
weighting (IPW) where test results for those with disease verification are reweighted by the inverse of
the probability of disease verification. Thus far, verification bias correction methods for ROC surface
analysis have only been developed for ordinal biomarkers. Specifically, a nonparametric likelihood-
based approach has been developed by Chi and Zhou to construct the empirical bias-corrected ROC
surface for an ordinal diagnostic test using the missing at random (MAR) assumption (Chi and Zhou,
2008). MAR is the key assumption that has been made in many methods for verification bias correction
(Little and Rubin, 1987). The verification process is MAR if the probability of disease verification is
purely determined by the test result and other observed clinical covariates. Thus, the probability
of receiving disease verification is conditionally independent of unknown true disease status given
observed variables. Since their method requires test results can only take finite values ranging from
1 to M, it cannot be applied to a continuous test such as the biomarkers being developed for AD.
Therefore, it is imperative to develop proper methods for evaluation of the accuracy of a continuous
diagnostic test accounting for the presence of verification bias. Here, we propose IPW estimators of
true classification rates (TCRs) that can be used to construct the ROC surface and estimate VUS
that correct for verification bias when assessing the accuracy of continuous tests in three-class disease
classification problems.

The rest of the paper is organized as follows. In Section 2, we give a brief review of ROC surface
construction and estimating VUS with full data. Based on IPW methodology, we propose a new
bias-corrected estimator of the ROC surface and VUS in Section 3 that are applicable to continuous
diagnostic tests. In Section 4, we present an extensive simulation study, and then in Section 5 we apply
the proposed method to the motivating study on AD. The paper concludes with a discussion.

2 Three-class ROC analysis with full data

Parametric and nonparametric approaches have been developed to evaluate accuracy of a diagnostic
test in the three-class setting when disease status is available for all subjects under study (Dreiseitl et al.,
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2000; Heckerling, 2001; Alonzo and Nakas, 2007; Nakas and Alonzo, 2007; Alonzo et al., 2009; Li
and Zhou, 2009; Nakas et al., 2010). In this section we provide a brief summary of the nonparametric
approaches.

Suppose n subjects are chosen randomly from the target population to assess the accuracy of a
diagnostic test. Let Ti denote the continuous result of an investigational diagnostic test, and let Di
denote the true disease status for the i-th subject, i = 1, . . . , n. Di = 0 indicates that the subject does
not have the disease, Di = 1 indicates that the subject has mild disease, and Di = 2 indicates that the
subject has severe disease. A higher value of T corresponds to a higher value of D.

Since there are three different disease categories to be determined, using the decision rules used by
Mossman (1999), two-ordered decision boundaries c1 < c2 are selected and the diagnostic decision is
made as following:

1. if Ti ≤ c1, then Di = 0 : nondisease subject,
2. if Ti > c1 and Ti < c2, then Di = 1 : mild-disease subject,
3. if Ti ≥ c2, then Di = 2 : severe-disease subject,

where Ti and Di stand for test results and disease status of the i-th subject, respectively. For each
pair of ordered thresholds (c1, c2), three TCRs can be generated. The ROC surface plot is made by
plotting TCR0, TCR1, and TCR2 in the three-dimensional space for all possible pairs of thresholds
(c1, c2) ∈ R2.

As a generalization of the AUC for summarizing an ROC curve under a binary diagnostic task,
VUS is defined as P(Ti > Tj > Tk | Di > Dj > Dk), where i , j , k are randomly selected subjects from
nondisease, mild-disease, and severe-disease subjects, respectively. Thus, a value of 1 corresponds to a
perfect test, while a value of 1/6 indicates the test is no better than random chance.

If all of the subjects are selected to obtain disease verification, Nakas and Yiannoutsos (2004)
nonparametrically estimated TCRs for each disease group by using

1. Di = 0 : T̂CR
0
(c1) =

∑n
i=1 I(Ti ≤ c1) I(Di = 0)∑n

i=1 I(Di = 0)

2. Di = 1 : T̂CR
1
(c1, c2) =

∑n
i=1 I(c1 < Ti < c2) I(Di = 1)∑n

i=1 I(Di = 1)

3. Di = 2 : T̂CR
2
(c2) =

∑n
i=1 I(Ti ≥ c2) I(Di = 2)∑n

i=1 I(Di = 2)
.

VUS can then be estimated as

V̂U S =
∑n

i=1

∑n
i=1

∑n
i=1 I(Ti < Tj < Tk) I(Di < Dj < Dk)∑n

i=1

∑n
i=1

∑n
i=1 I(Di < Dj < Dk)

.

Let Vi denote the verification status for the i-th subject, where i = 1, . . . , n. Vi = 1 if the subject has
the true disease status verified, and Vi = 0 otherwise. If only a subset of subjects are selected to obtain
disease verification, the naı̈ve estimator of VUS is obtained as

V̂U Snaı̈ve =
∑n

i=1

∑n
i=1

∑n
i=1 I(Ti < Tj < Tk) I(Di < Dj < Dk)Vi Vj Vk∑n

i=1

∑n
i=1

∑n
i=1 I(Di < Dj < Dk)Vi Vj Vk

.

This naı̈ve estimator is unbiased only if the subjects are completely randomly selected for disease
verification. Otherwise, this naı̈ve estimator is biased. This estimator is also referred to as a complete
case estimator because it only uses data from subjects with true disease status verified without bias
correction.

When the diagnostic task is binary, estimators for sensitivity and specificity of a diagnostic test were
derived by incorporating methodologies including the IPW approach that reweight observed data by

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 58 (2016) 6 1341

the inverse of the probability of disease verification (Alonzo and Pepe, 2005). The bias-corrected ROC
curve can be made by plotting bias-corrected sensitivity versus bias-corrected (1-specificity) for all
possible thresholds. By applying trapezoidal rule for integration, AUC can be empirically estimated
from a bias-corrected ROC curve. Alternatively, He et al. achieved direct estimation of the AUC based
on U-statistics and the IPW approach (He et al., 2009). Based on the MAR assumption, in the next
section, we use IPW methodology to construct a bias-corrected ROC surface and propose a new
estimator of bias-corrected VUS when the test results are continuous.

3 IPW estimation of ROC surface

Let Ai be a vector of observed covariates for the subject that may be informative about Di. Under
the defined setting, the observed data are composed of n independent and identical distributed (i.i.d)
samples Si of the random vector Si = (Vi, Di, Ti, Ai). (Ti, Vi, Ai) is observed for each subject, but
Di is observed only if Vi = 1. Here we also make the MAR assumption, that is, V ╨ D | (T, A)

(ignorable missingness). Let λ0, λ1, λ2 be the prevalence for the three disease subgroups and let
πi = Pr(Vi = 1|Ti, Ai ) be the verification probability. We further define Fd (t) to be the corresponding
distribution function of the new test result T for subjects with D = d , d = 0, 1, 2. Finally let Gd (t, a)

be the corresponding joint distribution function of new test result T and covariates A for subjects with
D = d , d = 0, 1, 2.

3.1 ROC surface

Based on the MAR assumption, we construct bias-corrected ROC surface by reweighting each obser-
vation from verified subjects using the inverse of probability of disease verification, that is, π−1

i . First,
we need to estimate TCRs, for each pair of two-ordered decision boundaries c1 < c2. Based on MAR
assumption, we can show that

E
[
I(Ti ≤ c1)Vi I(Di = 0) π−1

i

] = E
{

E
[
I(Ti ≤ c1)Vi I(Di = 0) π−1

i | Ti Ai

] }
=

= E
{

I(Ti ≤ c1)E
[
Vi I(Di = 0) π−1

i | Ti Ai

] }
.

Since π−1
i = Pr(Vi = 1|Ti, Ai )

−1, we have

E
[
Vi π

−1
i | Ti Ai

] = Pr(Vi = 1|Ti, Ai )
−1Pr(Vi = 1|Ti, Ai ) = 1.

In addition, based on the MAR assumption, V ╨ D | (T, A), so

E
[
Vi I(Di = 0) π−1

i | Ti Ai

] = E
[
I(Di = 0) | Ti Ai

]
E

[
Vi π

−1
i | Ti Ai

]
.

Therefore, we can show that

E
[
I(Ti ≤ c1)Vi I(Di = 0) π−1

i

] = E
{

I(Ti ≤ c1)E
[
Vi I(Di = 0) π−1

i | Ti Ai

] }
=

= E
{

I(Ti ≤ c1)E
[
I(Di = 0) | Ti Ai

]
E

[
Vi π

−1
i | Ti Ai

] }
= Pr(Ti ≤ c1 | Di = 0)Pr(Di = 0).
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By similar argument, we have

E
[
Vi I(Di = 0) π−1

i

] = Pr(Di = 0).

Therefore,

Di = 0 : T̂CR
0
IPW (c1) =

∑n
i=1 I(Ti ≤ c1)Vi I(Di = 0) / πi∑n

i=1 Vi I(Di = 0) / πi

Di = 1 : T̂CR
1
IPW (c1, c2) =

∑n
i=1 I(c1 < Ti < c2)Vi I(Di = 1)/πi∑n

i=1 Vi I(Di = 1) / πi

Di = 2 : T̂CR
2
IPW (c2) =

∑n
i=1 I(Ti ≥ c2)Vi I(Di = 2) / πi∑n

i=1 Vi I(Di = 2) / πi
.

Then the bias-corrected ROC surface plot is made by plotting TCRs in the three-dimensional space
for all possible pairs of thresholds. The estimation of V̂U SIPW assumed that πi = Pr(Vi = 1 | Ti, Ai ),
i = 1, . . . , n were known. At the design stage of a study when a protocol dictates which subjects get
disease verified the sampling fractions (π ) are known. In some studies, such as observational studies,
however, the actual selection probabilities may be unknown and thus need to estimate the sampling
fractions. Parametric models such as logistic regression models can be used to estimate the selection
probabilities. In these cases, we could substitute π̂i, the estimate of πi, for it in the expressions for the
estimator.

3.2 IPW estimator of VUS

Next, we develop an estimator of VUS that accounts for the verification biased sampling. The estima-
tion of VUS is based on following observation:

E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Ti > Tj > Tk)I(Di > Dj > Dk)
]

=

= E
{

E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Ti > Tj > Tk)I(Di > Dj > Dk)|Ti , Tj , Tk , Ai , A j , Ak

] }
=

= E
{

I(Ti > Tj > Tk)E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Di > Dj > Dk)|Ti , Tj , Tk , Ai , A j , Ak

] }
=

= E
{

I(Ti > Tj > Tk)E
[
I(Di > Dj > Dk)|Ti , Tj , Tk , Ai , A j , Ak

]

E
[
πi

−1 Vi | Ti , Ai

]
E

[
π j

−1 Vj | Tj , A j

]
E

[
πk

−1 Vk | Tk , Ak

] }
=

= E
{

I(Ti > Tj > Tk)E
[
I(Di > Dj > Dk)|Ti , Tj , Tk , Ai , A j , Ak

] }
=

= E
{

I(Ti > Tj > Tk)I(Di > Dj > Dk)

}
=

= E
{

I(Ti > Tj > Tk)|I(Di > Dj > Dk)

}
P(Di > Dj > Dk) =

= VU S · Pr(Di = 2)Pr(Dj = 1)Pr(Dk = 0) =
= VU S · λ0 λ1 λ2.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 58 (2016) 6 1343

By similar argument, we can prove that

E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Di > Dj > Dk)
]

= Pr(Di = 2)Pr(Dj = 1)Pr(Dk = 0).

We propose direct estimation of the VUS in the presence of verification bias using the following:

V̂U SIPW =
∑n

i=1

∑n
j=1

∑n
k=1 πi

−1 π j
−1 πk

−1 Vi Vj Vk I(Ti > Tj > Tk)I(Di > Dj > Dk)∑n
i=1

∑n
j=1

∑n
k=1 πi

−1 π j
−1 πk

−1 Vi Vj Vk I(Di > Dj > Dk)
.

To express it as a function of U-statistics, we need to rewrite (1) in symmetric form as follows:

V̂U SIPW =
∑n

i=1

∑n
j=1

∑n
k=1 φ(Si, Sj, Sk)∑n

i=1

∑n
j=1

∑n
k=1 ψ(Si, Sj, Sk)

,

where

φ(Si, S j, Sk) = 1
6
πi

−1 π j
−1 πk

−1Vi Vj Vk ·
{

I
[
(Ti − Tj ) (Di − Dj ) > 0

]
·

·I
[
(Tk − Tj ) (Dk − Dj ) > 0

]
· I

[
(Tk − Ti) (Dk − Di) > 0

] }

ψ(Si, S j, Sk) = 1
6
πi

−1 π j
−1 πk

−1Vi Vj Vk ·
{ [

I(Di > Dj ) + I(Di < Dj )
]

·

·
[
I(Dk > Dj ) + I(Dj < Dk)

]
· [

I(Di > Dk) + I(Dk < Di)
] }

. (1)

We can prove that the new estimator V̂U SIPW is consistent.

Theorem 1. The IPW VUS estimator is consistent. The Appendix contains a sketch of the proof of
Theorem 1.

3.3 Variance estimation

Based on the asymptotic theory of U-statistics, we can obtain the asymptotic distribution of V̂U SIPW .

Theorem 2. Let A =
(

1
λ0 λ1 λ2

,− VU S
λ0 λ1 λ2

)
, then

√
n(V̂U SIPW − VU S) →p N(0, AT ��� A), where ��� is

��� =
⎧⎨
⎩

Cov
(
φ(Si, S j, Sk), φ(Si, Sm, Sn)

)
Cov

(
φ(Si, S j, Sk), ψ(Si, Sm, Sn)

)
Cov

(
ψ(Si, S j, Sk), φ(Si, Sm, Sn)

)
Cov

(
ψ(Si, S j, Sk), ψ(Si, Sm, Sn)

)
.

A sketch of the proof of Theorem 2 is provided in the Supporting Information, Section A.

λ̂d can be estimated by
∑n

j=1 πi
−1 Vi I(Di=d )∑n

j=1 πi
−1 Vi

, and the empirical density functions (EDFs) F̂d (t), Ĝd (t, a)

can also be estimated empirically using observed data for d = 0, 1, 2.
Next, we apply the Jackknife method to obtain variance estimation for our IPW estimator. First,

we briefly describe Jackknife variance estimation. Detailed theory can be found in, for example, Tukey
(1958) and Quenouille (1956).
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Let ZZZ1, . . . ,ZZZn be independent random variables and define

Qn = Q(ZZZ1, . . . ,ZZZn) =
( n

m

)−1 ∑
1≤i1<···<im≤n

h(ZZZi1
, . . . ,ZZZim

)

as an one-sample U-statistic of degree m as a consistent estimator of the parameter θ . Let the Jackknife
pseudovalues be P̂i = nQn − (n − 1)Q(−i)

n−1 , where

Q(−i)
n−1 = Q(ZZZ1, . . . ,ZZZi−1,ZZZi+1, . . . ,ZZZn) =

=
(

n − 1
m

)−1 −i∑
1≤ j1<···< jm≤n

h(ZZZ j1
, . . . ,ZZZ jm

),

which is the statistic Qn−1 computed using the n − 1 sample from the original data set without the i-th
data point. Then the Jackknife estimator of θ is the average of the pseudovalues:

Q̂n( jack) ∼= 1
n

n∑
i=1

P̂i

and the Jackknife estimate of the variance of Qn is given by

V̂ar(Qn) = 1
n(n − 1)

n∑
i=1

(P̂i − Q̂n( jack))
2
.

Recall that we proved that

VU S =
E

[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Ti > Tj > Tk)I(Di > Dj > Dk)
]

E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Di > Dj > Dk)
] .

Let

φ = E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Ti > Tj > Tk)I(Di > Dj > Dk)
]

and

ψ = E
[
πi

−1 π j
−1 πk

−1Vi Vj VkI(Di > Dj > Dk)
]

be the numerator and denominator, respectively. Then estimators of φ and ψ are

φ̂ = 1
n(n − 1)(n − 2)

i 
= j 
=k∑
πi

−1 π j
−1 πk

−1Vi Vj VkI(Ti > Tj > Tk)(Di > Dj > Dk)

ψ̂ = 1
n(n − 1)(n − 2)

i 
= j 
=k∑
πi

−1 π j
−1 πk

−1Vi Vj VkI(Di > Dj > Dk).
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The i-th Jackknife pseudovalue for φ̂ is φ̂i
PS = nφ̂ − (n − 1)φ̂

(−i)
n−1 and the Jackknife estimator of φ,

φ̂JK = 1
n

∑n
i=1 φ̂i

PS. Thus the Jackknife estimator of variance of φ is

V̂ar(φ) = 1
n(n − 1)

n∑
i=1

(φ̂i
PS − φ̂JK )

2
.

Similarly, the Jackknife estimator of the variance of ψ is

V̂ar(ψ) = 1
n(n − 1)

n∑
i=1

(ψ̂ i
PS − ψ̂JK )

2

and the Jackknife estimator of the covariance between φ and ψ is

Ĉov(φ,ψ) = 1
n(n − 1)

n∑
i=1

[
(φ̂i

PS − φ̂JK )(ψ̂ i
PS − ψ̂JK )

]
.

By the multivariate delta method, we have

V̂ar(VU SIPW ) = φ̂2

ψ̂4
V̂ar(ψ) + 1

ψ̂2
V̂ar(φ) + 2 φ̂

ψ̂3
Ĉov(φ,ψ).

4 Simulation studies

Let us define short notations for our proposed estimators. We consider two IPW estimators. “IPW(E)”
corresponds to V̂U SIPW using estimated π by assuming a logistic regression model for the verification
process, while “IPW(K)” corresponds to V̂U SIPW using known π based on prior knowledge or study
design. “CC” represents the naı̈ve estimator of VUS only using complete cases without bias correction,
V̂U Snaı̈ve. “Full data” represents the estimates based on complete data when every subject gets disease
verified, which should be unbiased. “True” estimates are the average “full data” estimates when sample
size is 5000 across 1000 realizations, which can represent the true value of VUS.

The simulation setup of Alonzo et al. (2003, 2005) is modified to accommodate three-ordered
disease stages rather than binary disease status. Specifically, the disease status is formed based on an
underlying continuous pathology process, which remains subclinical or mild disease until it reaches
certain thresholds and hence progresses to the next disease stage. In this simulation study, the disease
status D with three stages, that is, nondisease, mild disease, and severe disease, is generated based on
the comparison between random variable Z ∼ N(0, 1) and two-ordered decision boundaries p1 < p2.
That is, nondisease (D = 0) if Z < p1; severe disease (D = 2) if Z > p2, and mild disease (D = 1),
otherwise. In other words, the thresholds p1 and p2 determine the prevalence of the disease. In practice,
there are usually multiple factors contributing to the development of disease, so it is reasonable for us
to view Z as the sum of two independent random variables Z1 and Z2 where both of them ∼ N(0, 0.5).
The aim of the continuous new diagnostic test results is to capture the information in those factors,
and here, we construct T as a linear combination of Z1, Z2 and random normal error, ε1. In particular,

T = α1Z1 + β1Z2 + ε1, ε1 ∼ N(0, 0.25).

Test accuracy varies according to the values of α1 and β1 (see Supporting Information Table SB1).
The new diagnostic test can be highly accurate when α1 = β1 = 1. Decreasing the value of either α1 or
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Table 1 Mean estimated VUS from 1000 realizations of the simulation with different sample sizes.

Method Sample size

100 400 600 800 1000 2000

Full data 0.798 (0.7%) 0.791 (0.2%) 0.791 (−0.2%) 0.794 (−0.2%) 0.792 (−0.1%) 0.793 (0.1%)
CC 0.752 (−5.1%) 0.745 (−6.0%) 0.745 (−5.9%) 0.748 (−5.6%) 0.746 (−5.8%) 0.748 (−5.7%)
IPW(E) 0.800 (1.0%) 0.791 (0.2%) 0.791 (0.1%) 0.795 (−0.4%) 0.793 (0.0%) 0.793 (0.1%)
IPW(K) 0.797 (0.6%) 0.791 (0.2%) 0.791 (0.2%) 0.795 (−0.4%) 0.792 (0.0%) 0.793 (0.1%)

Relative bias, (mean VUS − true estimate of 0.792)/0.792 is provided in parentheses.

β1 to zero, causes the test to capture less information about the disease status and thus leads to lower
accuracy. Similarly, when both the values of α1 and β1 decrease to 0.5, the inherent accuracy of T also
decreases. By letting α1 = β1 = 0, the test becomes no better than random guessing.

One covariate A is generated, in a way similar to T, according to the following relation:

A = α2Z1 + β2Z2 + ε2, ε2 ∼ N(0, 0.25),

where ε1 and ε2 are independent. Again, by varying the value of α2 and β2, one can change the degree
to which the covariate is correlated with disease status.

The verification mechanism is designed as a Bernoulli random variable with the verification proba-
bility related to the test results and covariate using the probability model

logit(P(V = 1)) = γ0 + γ1 I(tq1 < T ≤ tq2 ) +
+ γ2 I(T > tq2 ) + γ3 I(aq1 < A ≤ aq2 ) + γ4 I(A > aq2 ), (2)

where tq1 and tq2 are the q1-th and q2-th quantiles of the distribution of T or A (q1 < q2), respectively.
In this setting, verification status is related to the disease status through the new test results and
covariate. Higher T or A increases the probability of disease verification. Using ordered thresholds
tq1 and tq2 , patients are classified into different categories according to the values of their T and A.
Different verification probabilities are given to patients in different categories to introduce informative
missingness in the disease status. In the estimation procedure, the correct models are assumed to hold
for the verification probability.

The diagnostic test under study is highly accurate (true VUS = 0.792) with α1 = β1 = 1. The value of
(p1, p2) is chosen to yield disease prevalence rates of 5%, 15%, and 80%, for nondisease, mild-disease,
and severe-disease status, respectively. (q1, q2) and (γ0, γ1, γ2, γ3, γ4) are chosen to be (70%, 90%)
and (−1.4, 1, 2, 0.8, 2), respectively. Note that under this verification model, subjects with higher test
results or higher covariate values or both are more likely to receive disease verification. Averaging
over 1000 realizations of simulation with a sample size of 2000, the percentage of disease verification
among subjects in nondisease (D = 0), mild-disease (D = 1), and severe-disease (D = 2) groups are
26%, 67%, and 89%, respectively. Overall, the probability of verification in the population is about
35%. The default simulations have a sample size of 1000. Simulation results under different scenarios
are summarized over 1000 replications.

4.1 Performance of VUS: bias

Table 1 reports average estimated VUS of the diagnostic test across 1000 replications of the simulation
for sample sizes ranging from 100 to 2000. As expected, the CC estimator is biased (5.1–6.0%),
compared to the true value of VUS (“true” estimates). Both IPW(E) and IPW(K) correct the noticeable
bias of the CC estimator and are quite close to the full data estimates. The relative bias of IPW and
full data to “true” estimates are negligible. As sample size increases, their performance become better.
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Figure 1 Full data (green) and CC (red) ROC surface from a randomly chosen realization of the
simulation study; TCR0, TCR1, and TCR2 for D = 0, 1, and 2, respectively.

Figure 2 Full data (green) and IPW (K) (red) ROC surface from a randomly chosen realization of
the simulation study; TCR0, TCR1, and TCR2 for D = 0, 1, and 2, respectively.

The verification bias caused by ignoring the biased sampling procedure for disease verification is
also apparent in Fig. 1, where the empirical ROC surface based on the CC (red surface) and full data
(green surface) for one randomly chosen data realization with sample size of 1000 is presented. The
CC ROC surface is biased downwards relative to the full data curve (VUS value: 0.772 vs. 0.807).
The graphs are drawn with respect to the three correct classification rates, across all possible decision
thresholds. Figure 2 provides the bias-corrected ROC surface using IPW(E) (red surface) and the full
data (green surface) ROC surface. It is not surprising that IPW ROC surface lies closely next to the
full data ROC surface and the corresponding VUS is similar to the full data value (0.812 vs. 0.807).
The ROC surface for IPW(K) is not presented because it is very similar to that for IPW(E).

When sample size is as small as 100 and the overall disease verification rate is 34%, approximately
only 34 subjects have disease status verified. Although the CC and IPW estimators both only require
data from verified subjects, the IPW estimators exhibited substantially smaller bias than the naı̈ve CC
estimator. This further justifies the useful application of the IPW estimators in correcting verification
bias and properly assessing the test accuracy with small sample size.
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Table 2 The ratio of the Monte Carlo mean of the estimated SD to simulation SD of the estimators.

Method Sample size

400 600 800 1000 2000

Full data 0.972 (88.6) 0.991 (90.4) 0.987 (90.2) 1.028 (91.3) 1.034 (91.7)
CC 0.998 (89.7) 1.008 (89.9) 1.013 (90.0) 1.017 (91.6) 1.033 (91.5)
IPW(E)-J 0.986 (90.2) 1.008 (90.3) 1.007 (91.0) 1.015 (91.7) 1.043 (91.8)
IPW(K)-J 0.983 (89.7) 1.001 (90.2) 1.002 (90.5) 1.012 (91.5) 1.034 (91.6)
IPW(E)-CF 0.714 (76.9) 0.833 (83.9) 0.875 (87.2) 0.911 (87.8) 0.992 (89.4)
IPW(K)-CF 0.917 (87.0) 0.949 (88.5) 0.966 (88.6) 0.980 (90.2) 1.019 (91.0)

90% CI coverage probabilities of VUS variance estimator are provided in parentheses. Jackknife variance estimator used for full
data, CC, IPW(E)-J, and IPW(K)-J. Closed-form variance estimator used for IPW(E)-CF and IPW(K)-CF.

4.2 Performance of VUS: SD

In Section 3.3, we developed a closed-form asymptotic variance estimator as well as Jackknife variance
estimator for the IPW estimators of VUS. Here we further investigate the performance of these
asymptotic standard deviation (SD) estimators for the VUS for a range of sample sizes. The ratio
between the Monte Carlo mean of the estimated SD to the Monte Carlo SD of the VUS estimators
(simulation SD) is presented. The simulation SD of the VUS estimators is calculated from 1000
realizations and can adequately represent the variability of the estimators.

The Jackknife variance estimator performs well for sample size as small as 100, with the ratio of
estimated SD to simulation SD ranging from 0.830 to 1.043. When sample size is small (<400), the
closed-form IPW(E) VUS variance estimator substantially underestimates the variance of IPW(E) (SD
ratio <30%). On the contrary, the closed-form IPW(K) VUS variance estimator is close to empirical
estimates. The SD ratio is around 91% when sample size is 100. The poor performance of IPW(E)
VUS variance estimator is likely due to the fact that the estimated variance does not account for the
variation in estimating the verification probability. Naturally the extension to consider the variation in
estimating the verification probability is worth further investigation, which is discussed in Section 6.
As sample size increases, the improvement in the performance of the closed-form variance estimator
for IPW(E) demonstrates that this should not be a significant problem with sample sizes greater than
600. This is not surprising because the variance in the estimated verification probability is relatively
small, compared with the variance of VUS.

The performance of the variance estimators is further assessed by calculating coverage probabilities
of the confidence interval (CI) corresponding to the variance estimator. Table 2 summarizes nominal
90% CI coverage probabilities of VUS for several sample sizes. For the Jackknife variance estimators,
nominal 90% coverage probabilities between 89.7% and 91.8% are achieved. The nominal 90% coverage
probabilities for the closed-form variance estimators for IPW(K) have comparable performance (87.0–
91.0%). Not surprising the closed-form variance estimator for IPW(E) did not obtain 90% coverage
rate (71.4–83.3%) when sample size is small (≤ 600) but has good coverage for sample size of 2000. In
Table 3, the IPW mean squared error (MSE) is smaller than the CC MSE (between 45% and 78%) but
is about 35% more than the full data MSE, which is reasonable as about 66% of the observations are
missing the disease status.

In general, the Jackknife variance estimator and the closed-form variance estimator of V̂U SIPW

using known π perform very well under small samples. The closed-form variance estimator of V̂U SIPW
using estimated π , however, requires relatively larger sample size to achieve good performance.
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Table 3 MSE ×10−3 of VUS estimators.

Method Sample size

400 600 800 1000 2000

Full data 2.21 1.46 1.06 0.86 0.42
CC 5.42 4.30 3.46 3.34 2.59
IPW(E) 3.03 1.97 1.43 1.15 0.57
IPW(K) 2.98 1.97 1.41 1.14 0.57

Jackknife variance estimator used for full data, CC, IPW(E), and IPW(K).

Table 4 Detailed information about verification rate: varying test accuracy.

Scenario A Scenario B Scenario C Scenario D

Verification rate (overall) 35% 36% 36% 36%
Verification rate (D = 0) 26% 28% 28% 31%
Verification rate (D = 1) 67% 59% 62% 51%
Verification rate (D = 2) 89% 80% 84% 67%

4.3 Varying test accuracy and verification rates

The inherent accuracy of the new diagnostic test may influence the degree of verification bias (Begg
and Greenes, 1983). In this setting, by changing values of α1 and β1, we can vary the accuracy of the
test. We consider the following four scenarios,

Scenario A (Default setting): α1 = β1 = 1.
Scenario B: α1 = 1, β1 = 0.
Scenario C: α1 = 0.5, β1 = 0.5.
Scenario D: α1 = 0, β1 = 0.

Detailed information about verification percentages for each scenario can be found in Table 4.
Simulation results are obtained by averaging over 1000 realizations of simulation with a sample

size of 1000. All other simulation setup parameters, including verification mechanism and disease
prevalence, stay the same as previous simulation setup. Results are presented in Table 5. Since the CC
estimator does not account for biased sampling, as expected, CC yields biased estimates of VUS when
there is a potential for verification bias. In each scenario, CC underestimates the true VUS. Conversely,
IPW is very close to the true VUS. Note that as the test accuracy decreases, the relative bias tends to
increase which is a reflection of the smaller value of base value (true value of VUS). Jackknife variance
estimators are similar to the simulation variance and the 90% coverage rates are near their nominal
values.

Table 5 also provides MSE of the VUS estimators for scenarios A–D. Under all scenarios, IPW
shows smaller MSE relative to CC. The two IPW estimators give comparable performance.

We also investigate the performance of the VUS estimators when we vary the verification percentage.
By changing the gamma values in (4), we generate four different scenarios representing low, medium,
high verification rate as well as random verification are considered (see Supporting Information Tables
SB2 and SB3). As expected, we find little small sample bias (less than 0.3%) in the IPW estimator.
Conversely, CC underestimates VUS (−1.2% to −5.4%). When verified subjects are selected completely
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Table 5 Comparison of the VUS estimators: varying test accuracy.

Method VUSa) SDb) SEc) Coverage (%)d) MSEe)

Scenario A Full data 0.792 (−0.1%) 0.028 0.029 91.3 0.86
CC 0.746 (−5.8%) 0.034 0.035 91.6 3.34
IPW(E) 0.793 (0.1%) 0.033 0.034 91.7 1.15
IPW(K) 0.792 (0.0%) 0.033 0.034 91.5 1.14

Scenario B Full data 0.458 (0.2%) 0.036 0.036 90.1 1.27
CC 0.402 (−12.1%) 0.041 0.040 88.7 4.69
IPW(E) 0.459 (0.5%) 0.046 0.045 88.6 1.99
IPW(K) 0.459 (0.4%) 0.046 0.044 88.4 1.98

Scenario C Full data 0.565 (−0.0%) 0.036 0.036 90.6 1.32
CC 0.506 (−10.5%) 0.041 0.042 90.0 5.23
IPW(E) 0.567 (0.2%) 0.045 0.045 89.9 2.00
IPW(K) 0.566 (0.2%) 0.045 0.045 89.7 1.99

Scenario D Full data 0.167 (−0.0%) 0.023 0.023 90.0 0.52
CC 0.136 (−18.1%) 0.025 0.025 90.0 1.55
IPW(E) 0.168 (0.9%) 0.030 0.029 89.4 0.86
IPW(K) 0.168 (0.9%) 0.030 0.029 89.7 0.86

a) Relative bias to “true” estimates is provided in parentheses.
b) Simulation SD.
c) The average of the SD estimator (Jackknife).
d) 90% CI coverage probabilities calculated using the SD estimator (Jackknife).
e) MSE ×10−3 of VUS estimators calculated using the SD estimator (Jackknife).

at random, there is little potential for verification bias. And since each verified observation is attached
with the same weight (π−1

i ), the IPW estimator and CC estimator are both unbiased and approximately
the same. This simulation supports that IPW remains valid and robust under different verification
mechanisms.

5 Data application

We illustrate our proposed approaches with data from the ADNI study. ADNI is a large, multicenter,
longitudinal neuroimaging study launched in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private
pharmaceutical companies, and nonprofit organizations (Misra et al., 2009). For disease verification,
due to the fact that it is unrealistic to perform autopsy on all the subjects under study, ADNI
investigators used neuropsychological tests to identify disease stages into probable AD, amnestic
MCI, and normal cognition. Over 1600 participants with MCI, probable AD, and elderly, cognitively
normal control (CN) have been identified and recruited over three phases: ADNI 1, ADNI GO, and
ADNI 2.

One of the goals of the ADNI study is to develop a cerebrospinal fluid (CSF) biomarker signature
for AD stage identification (Misra et al., 2009). Among all the potential biomarkers under study, CSF
tau protein concentrations are considered to be a promising biomarker that may be diagnostic for
different AD stages relative to degree of cognitive impairment (Frank et al., 2003). Also, recent studies
showed that CSF tau changes may predict the conversion to AD in MCI subjects (Hansson et al.,
2006). However, before introducing it into clinical diagnosis, it is critically important to perform a
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Table 6 Summary statistics of ADNI data.

Variable Summary statistics

D Nondisease: 25%; mild disease: 18%; severe disease: 56%
Ta) Mean: 0.002; Median: −0.261; SD: 0.999
Ab) Mean: 0.002; Median: 0.246; SD: 1.000

a) Tau protein: values are standardized.
b) Aβ1-42: values are standardized and multiplied by −1.

study to determine the accuracy of using tau level in CSF as a biomarker to predict different stages of
AD.

In our analysis, we are interested in evaluating the diagnostic accuracy of CSF tau protein in pre-
dicting stages of AD in terms of cognitive impairment, which ranges from normal aging (nondisease),
to MCI (mild disease), and probable AD (severe disease). Our purpose is to evaluate whether the
proposed estimators can properly assess the accuracy of CSF tau protein without requiring disease
verification on all the subjects. In practice, the clinical decision about disease verification can be made
based on a combination of new test results and available clinical characteristics. To mimic the real-life
application without overcomplication, we introduce nonrandom missingness in disease status based on
levels of tau protein (new biomarker test) in CSF and a clinical covariate. We then apply the proposed
methods to estimate the ROC surface and VUS. We have the full data results so we can compare our
estimators to the full data estimator, which is not subject to verification bias.

Here we consider tau protein levels as the new diagnostic test. Test results are positively related
with disease status (i.e., larger values of test results indicate more severe disease stages). Reduced CSF
levels of Aβ1-42 are believed to result from large-scale accumulation of this Aβ peptide into insoluble
plaques in the AD brain, which makes Aβ1-42 concentration in CSF an informative clinical covariate
(Frank et al., 2003). We denote D to be the true AD stages (D = 0: normal aging; D = 1: MCI; D = 2:
probable AD). T denotes tau protein levels, A denotes Aβ1-42, and V denotes verification status. We
continue to use notation defined before.

Excluding subjects without data on tau protein (T) and Aβ1-42 (A), the full data set in our analysis
includes AD stages (D), tau protein, and Aβ1-42 for 1078 subjects. As mentioned before, a decreased
level of A implies higher degree of disease stages. For convenience, T and −A are standardized. Note
that there are tied values in both T and A. Since our methods apply to continuous test results, in
practice, one reasonable approach is to add a small amount of uniformly distributed random “jitter”
to each test result to break ties. We study the sensitivity of our proposed estimators to different amount
of jitter added to the test results. We estimate VUS over a series of values of jitter by adding a uniform
number between [−jitter, +jitter] to the test result. We tried four values: 0.001, 0.0001, 0.00001, and
0.000001 and they all give almost identical results in terms of bias and variance (Euclidean distance
between average estimate of VUS is less than −10−10). Therefore, we only present results with jitter
randomly selected from the uniform distribution [−10−5, 10−5].

Table 6 shows the summary statistics for all the subjects used in our analysis. We observe that T and
A are not normally distributed with large variation relative to the mean. It is appropriate to apply our
proposed estimators since our approach is nonparametric. Also due to the large variation, we expect
wider 95% CI than that of simulation results with similar setting. Subjects with higher T and A are
more likely to have higher degree of disease status, which can be shown in boxplots of T and A for
stratified disease status (see Supporting Information Fig. SC1).

Only a fraction of the subjects receive the GST and have disease status observed. T and A are
obtained on all subjects. The verification status, V is generated with a model as following:
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Table 7 Estimates of the VUS using data from ADNI.

Method VUS JK SD (×100) Asymptotic SD (×100) 95 % CI (JK)

Full data 0.356 1.872 —– (0.320, 0.393)
CC 0.296 2.986 —– (0.237, 0.354)
IPW(E) 0.357 5.358 5.109 (0.252, 0.462)
IPW(K) 0.357 5.285 4.950 (0.253, 0.460)

Figure 3 Full data (green) and CC (red) ROC surface of tau protein; TCR0, TCR1, and TCR2 for
D = 0, 1, and 2, respectively.

log
{

P(V = 0 | D , T , A)

P(V = 1 | D , T , A)

}
= γ0 + γ1T + γ2A.

In particular, we choose (γ0, γ1, γ2) = (−0.6, 1.6, 1) for the verification model. Overall, 39% of the
subjects receive disease verification. The percentage of disease verification among subjects in nondisease
(D = 0), mild-disease (D = 1), and severe-disease (D = 2) groups are 20%, 37%, and 69%, respectively.
Since the conditional probability of having disease status verified is in the denominator of the model,
subjects with higher T and A are related to increased verification rates (see Supporting Information
Fig. SC2).

The resulting estimates of VUS are presented in Table 7. The asymptotic variance result from
Theorem 2 as well as the Jackknife variance estimate are presented. As expected, CC underestimates
the VUS in this case by nearly 17% and its 95% CI does not even include the true value. The bias
of CC estimator is also apparent in Fig. 3, where the empirical ROC surface based on the complete
cases (red surface) and full data (green surface) is presented. The CC ROC surface is consistently
biased downwards relative to the full data curve. Figure 4 provides the bias-corrected ROC surface
using IPW(K) (red surface) and the full data (green surface) ROC surface. The bias-correction method
shows underestimation and overestimation evenly across different pairs of decision thresholds, which
yields VUS estimates similar to the full data value, with values of bias close to 0.3%. The ROC
surfaces for IPW(E) is not presented because they are very similar to that for IPW(K). Clearly, the
naı̈ve estimator using verified subjects without taking into account the verification bias could lead to
inaccurate conclusions about the accuracy of the test.
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Figure 4 Full data (green) and IPW(K) (red) ROC surface of tau protein; TCR0, TCR1, and TCR2
for D = 0, 1, and 2, respectively.

Comparing IPW(K) and IPW(E), the 95 % CIs obtained based on Jackknife methods are very close
to each other and both of them contain the full data value of 0.357. The variance estimates obtained
via the Jackknife methods and the asymptotic theorem are very similar, which further supports the
application of the asymptotic variance in real-life data.

6 Discussion

This paper focuses on the important problem of assessing the accuracy of a continuous medical
diagnostic test with biased sampling in disease verification for three-class classification problems.
We explored the estimation of the ROC surface and the summary measure of the ROC surface,
VUS, in the presence of verification bias. Through theoretical framework and simulation studies, we
showed that proposed IPW estimator performs quite well. In addition, Jackknife variance estimators
were derived and shown to work well in finite sample setting. A closed-form expression for the
asymptotic variance of the IPW estimator was also derived and it resembled the simulation variance
when the verification process is known. With relative large sample size (> 600) and reasonably estimated
verification probabilities, the closed-form variance estimator with estimated verification rate performs
well. In practice, when we know the verification process well, we recommend to use the closed-form
variance estimator for IPW VUS with known verification probabilities. When we do not have a good
understanding about the selection process for disease verification and sample size is small (< 400), we
recommend the Jackknife approach to estimate variance of our proposed estimators because it gives
good performance in terms of closeness to the simulated variance and maintaining required coverage
probabilities. Otherwise, when sample size is large, the closed-form variance estimator for IPW with
estimated verification probabilities is preferred as it is comparable to the simulated variance and is
much less computer intensive.

The proposed estimators are easy to implement and only require a subset of subjects under study
to obtain disease verification. When the GST is too expensive, our approach can reduce the cost by
only requiring partial disease verification but at the same time still presents valid conclusions about
the accuracy of the new diagnostic test. If the studies are designed so that the verification probabilities
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are known or can be estimated reasonably well, the performance of our estimators can be further
ensured. The methodology proposed may be easily modified to diagnostic problems with more than
three classes of disease.

There are some issues that remain open for future investigation. In simulation studies, we found
that the variance estimator has good performance when the verification probabilities, that is, πi, are
known. But when πi are not known, the variance estimator tends to underestimate the variance, which
probably is due to the fact that we did not account for the variance in estimating the πi. Although this
should not be a significant problem in large samples, developing variance estimators that account for
the variance in π̂i warrants further attention. In addition, here we developed bias-corrected estimators
based on the MAR assumption. In practice, however, such assumption may not hold since the doctor’s
decision to refer a patient to receive disease verification may depend on comprehensive information on
the patient’s health condition, which may be not be guaranteed to be fully captured by the test results
or other measured auxiliary data. In such a situation, we call the underlying missingness in disease
status nonignorable. Rotnitzky et al. (2006) developed a doubly robust bias-correction procedure for
the AUC under nonignorable missingness. The extension of their methodology to the volume under
the ROC surface may be helpful in diagnostic medicine when the severity of the disease is of interest.
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Appendix

Proof of Theorem 1

We already know that,

E
[
φ(Si, S j, Sk)

]
= VU S λ0 λ1 λ2

E
[
ψ(Si, S j, Sk)

]
= λ0 λ1 λ2.
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Therefore, by the law of large numbers, we have∑
i 
= j 
=k φ(Si, S j, Sk)

n(n − 1)(n − 2)
→p VU S λ0 λ1 λ2∑

i 
= j 
=k ψ(Si, S j, Sk)

n(n − 1)(n − 2)
→p λ0 λ1 λ2.

Hence,

V̂U SIPW =
∑

i 
= j 
=k φ(Si, S j, Sk)∑
i 
= j 
=k ψ(Si, S j, Sk)

→p VU S.

References

Alonzo, T. A. and Nakas, C. T. (2007). Comparison of ROC umbrella volumes with an application to the
assessment of lung cancer diagnostic markers. Biometrical Journal 49, 654–664.

Alonzo, T. A., Nakas, C. T., Yiannoutsos, C. T. and Bucher, S. (2009). A comparison of tests for restricted
orderings in the three-class case. Statistics in Medicine 28, 1144–1158.

Alonzo, T. A. and Pepe, M. S. (2005). Assessing accuracy of a continuous screening test in the presence of
verification bias. Journal of the Royal Statistical Society, Series C (Applied Statistics) 54, 173–190.

Alonzo, T. A., Pepe, M. S. and Lumley, T. (2003). Estimating disease prevalence in two-phase studies. Biostatistics
4, 313–326.

Begg, C. and Greenes, R. (1983). Assessment of diagnostic tests when disease verification is subject to selection
bias. Biometrics 39, 207–215.

Chi, Y. and Zhou, X. (2008). Receiver operating characteristic surfaces in the presence of verification bias. Journal
of the Royal Statistical Society, Series C (Applied Statistics) 57, 1–23.

Dreiseitl, S., Ohno-Machado, L. and Binder, M. (2000). Comparing three-class diagnostic tests by three-way
ROC analysis. Medical Decision Making 20, 323–331.

Frank, R. A., Galasko, D., Hampel, H., Hardy, J., De Leon, M. J., Mehta, P. D., Rogers, J., Siemers, E. and
Trojanowski, J. Q. (2003). Biological markers for therapeutic trials in Alzheimer’s disease: proceedings of the
biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiology of
Aging 24, 521–536.

Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K. and Minthon, L. (2006). Association between
CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up
study. Lancet Neurology 5, 228–234.

He, H., Lyness, J. and McDermott, M. (2009). Direct estimation of the area under the receiver operating charac-
teristic curve in the presence of verification bias. Statistics in Medicine 28, 361–376.

Heckerling, P. S. (2001). Parametric three-way receiver operating characteristic surface analysis using mathematica.
Medical Decision Making 21, 409–417.

Li, J. and Zhou, X. (2009). Nonparametric and semiparametric estimation of the three way receiver operating
characteristic surface. Journal of Statistical Planning and Inference 139, 4133–4142.

Little, R. and Rubin, D. (1987). Statistical Analysis with Missing Data. Wiley, New York, NY.
McNeil, B. and Adelstein, S. (1976). Determining the value of diagnostic and screening tests. Journal of Nuclear

Medicine 17, 439–486.
Misra, C., Fan, Y. and Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients,

and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44, 1415–1422.
Mossman, D.(1999). Three-way ROCs. Medical Decision Making 19, 78–89.
Nakas, C. T. and Alonzo, T. A. (2007). ROC graphs for assessing the ability of a diagnostic marker to detect three

disease classes with an umbrella ordering. Biometrics 63, 603–609.
Nakas, C. T. and Alonzo, T. A. (2010). Accuracy and cut-off point selection in three-class classification problems

using a generalization of the Youden index. Statistics in Medicine 29, 2946–2955.
Nakas, C. T. and Yiannoutsos, C. T. (2004). Ordered multiple-class ROC analysis with continuous measurements.

Statistics in Medicine 23, 3437–3449.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



1356 Y. Zhang et al.: ROC Surface in the Presence of Verification Bias

Pepe, M. S. and Alonzo, T. A. (2001). Comparing disease screening tests when true disease status is ascertained
only for screen positives. Biostatistics 2, 249–260.

Quenouille, M. H., (1956). Notes on bias in estimation. Biometrika 43, 353–360.
Ransohoff, D. and Feinstein, A. (1978). Problems of spectrum and bias in evaluating the efficacy of diagnostic

tests. New England Journal of Medicine 299, 926–930.
Rotnitzky, A., Faraggi, D. and Schisterman, E. (2006). Doubly robust estimation of the area under the receiver-

operating characteristic curve in the presence of verification bias. Journal of the American Statistical Associ-
ation 101, 1276–1288.

Scurfield, B. (1978). Multiple-event forced-choice tasks in the theory of signal detectability. Journal of Mathemat-
ical Psychology 40, 253–269.

Sox, H. C., Blatt, M. A., Higgins, M. C. and Marton, K. I. (1988). Medical Decision Making. Butterworths-
Heinemann, Boston, MA.

Tukey, J. (1958). Bias and confidence in not-quite large samples. Annals of Mathematical Statistics 29, 614.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


